Abstract
In this study, the effects of four Hofmeister salts (KCl, NaCl, CaCl2 and MgCl2) at different concentrations (0.02, 0.04 and 0.06 mol/L) on gel properties and rheological properties of soy protein isolate (SPI) were systematically explored. The results showed that the addition of salt ions could improve the gel strength of SPI, but higher concentrations (0.04 and 0.06 mol/L) of CaCl2 and MgCl2 reduced the gel stickiness of the samples. In the dynamic rheological test, each salt ion increased the storage modulus (G’) and loss modulus (G”) of the samples to varying degrees. Higher concentrations of CaCl2 and MgCl2 caused excessive aggregation of SPI, whereas lower concentrations of CaCl2 and MgCl2 exerted an opposite effect. In the temperature sweep test, CaCl2 and MgCl2 changed the trend of G’ and G”, while KCl and NaCl simply increased G’ and G” without changing their trend. In the steady rheological test, higher concentrations of CaCl2 and MgCl2 reduced the apparent viscosity and shear force of the samples, while an opposite effect was observed under the other salt conditions. The decreasing order of the effects of higher concentrations of salt ions on the apparent viscosity and shear force was K+ > Na+ > Mg2+ > Ca2+. In summary, at specific salt ion concentrations (0.04 and 0.06 mol/L), the changes in gel and rheological properties of SPI were consistent with the Hofmeister effect.
References
[1]
MCCLEMENTS D J, GROSSMANN L. The science of plantbased foods: constructing next-generation meat, fish, milk, and egg analogs[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(4): 4049-4100. DOI:10.1111/1541-4337.12771.
[2]
MA K K, GREIS M, LU J K, et al. Functional performance of plant proteins[J]. Foods, 2022, 11(4): 594. DOI:10.3390/foods11040594.
[3]
RENKEMA J M S. Formation, structure and rheological properties of soy protein gels[D]. Wageningen: Wageningen University, 2001.
[4]
LUO K Y, LIU S T, MIAO S, et al. Effects of transglutaminase precrosslinking on salt-induced gelation of soy protein isolate emulsion[J]. Journal of Food Engineering, 2019, 263: 280-287. DOI:10.1016/j.jfoodeng.2019.07.008.
[5]
ZHENG L, REGENSTEIN J M, ZHOU L Y, et al. Soy protein isolates: a review of their composition, aggregation, and gelation[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(2): 1940-1957. DOI:10.1111/1541-4337.12925.
[6]
CHEN N N, ZHAO M M, CHASSENIEUX C, et al. The effect of adding NaCl on thermal aggregation and gelation of soy protein isolate[J]. Food Hydrocolloids, 2017, 70: 88-95. DOI:10.1016/j.foodhyd.2017.03.024.
[7]
TUHUMURY H C D, SMALL D M, DAY L. Effects of Hofmeister salt series on gluten network formation: part Ⅰ. Cation series[J]. Food Chemistry, 2016, 212: 789-797. DOI:10.1016/j.foodchem.2016.05.182.
[8]
ONCSIK T, TREFALT G, BORKOVEC M, et al. Specific ion effects on particle aggregation induced by monovalent salts within the Hofmeister series[J]. Langmuir, 2015, 31(13): 3799-3807. DOI:10.1021/acs.langmuir.5b00225.
[10]
MELNYK J P, DREISOERNER J, BONOMI F, et al. Effect of the Hofmeister series on gluten aggregation measured using a high shearbased technique[J]. Food Research International, 2011, 44(4): 893-896. DOI:10.1016/j.foodres.2011.01.053.
[11]
LIU Y X, LI X Y, LIU J M, et al. Focusing on Hofmeister series: composition, structure and functional properties of pea protein extracted with food-related anions[J]. Food Hydrocolloids, 2022, 133: 107976. DOI:10.1016/j.foodhyd.2022.107976.
[13]
WANG X F, HE Z Y, ZENG M M, et al. Effects of the size and content of protein aggregates on the rheological and structural properties of soy protein isolate emulsion gels induced by CaSO4[J]. Food Chemistry, 2017, 221: 130-138. DOI:10.1016/j.foodchem.2016.10.019.
[14]
CHEN H M, FU X, LUO Z G. Effect of gum arabic on freeze-thaw stability, pasting and rheological properties of tapioca starch and its derivatives[J]. Food Hydrocolloids, 2015, 51: 355-360. DOI:10.1016/j.foodhyd.2015.05.034.
[15]
MALTAIS A, REMONDETTO G E, GONZALEZ R, et al. Formation of soy protein isolate cold-set gels: protein and salt effects[J]. Journal of Food Science, 2005, 70(1): 67-73. DOI:10.1111/j.1365-2621.2005.tb09023.x.
[17]
HE X L, EWING A G. Hofmeister series: from aqueous solution of biomolecules to single cells and nanovesicles[J]. Chembiochem: a European Journal of Chemical Biology, 2023, 24(9): e202200694. DOI:10.1002/cbic.202200694.
[18]
YANG Z, DE CAMPO L, GILBERT E P, et al. Effect of NaCl and CaCl2 concentration on the rheological and structural characteristics of thermally-induced quinoa protein gels[J]. Food Hydrocolloids, 2022, 124: 107350. DOI:10.1016/j.foodhyd.2021.107350.
[19]
ZHAO Z K, MU T H, ZHANG M, et al. Effect of salts combined with high hydrostatic pressure on structure and gelation properties of sweet potato protein[J]. LWT-Food Science and Technology, 2018, 93: 36-44. DOI:10.1016/j.lwt.2018.03.007.
[21]
LAI H, SHEN Q, ZHAN F C, et al. Effect of Hofmeister series anions on freeze-thaw stability of emulsion stabilized with whey protein isolates[J]. Food Hydrocolloids, 2023, 134: 108015. DOI:10.1016/j.foodhyd.2022.108015.
[22]
CHEN N N, CHASSENIEUX C, NICOLAI T. Kinetics of NaCl induced gelation of soy protein aggregates: effects of temperature, aggregate size, and protein concentration[J]. Food Hydrocolloids, 2018, 77: 66-74. DOI:10.1016/j.foodhyd.2017.09.021.
[23]
XIAO Y Q, KANG S F, LIU Y N, et al. Effect and mechanism of calcium ions on the gelation properties of cellulose nanocrystals-whey protein isolate composite gels[J]. Food Hydrocolloids, 2021, 111: 106401. DOI:10.1016/j.foodhyd.2020.106401.
[24]
GUO Z B, LI Z Y, WANG J Y, et al. Gelation properties and thermal gelling mechanism of golden threadfin bream myosin containing CaCl2 induced by high pressure processing[J]. Food Hydrocolloids, 2019, 95: 43-52. DOI:10.1016/j.foodhyd.2019.04.017.
[25]
WANG X F, ZENG M M, QIN F, et al. Enhanced CaSO4-induced gelation properties of soy protein isolate emulsion by pre-aggregation[J]. Food Chemistry, 2018, 242: 459-465. DOI:10.1016/j.foodchem.2017.09.044.
[26]
NISHINARI K, FANG Y, GUO S, et al. Soy proteins: a review on composition, aggregation and emulsification[J]. Food Hydrocolloids, 2014, 39: 301-318. DOI:10.1016/j.foodhyd.2014.01.013.
[28]
HUA Y F, CUI S W, WANG Q, et al. Heat induced gelling properties of soy protein isolates prepared from different defatted soybean flours[J]. Food Research International, 2005, 38(4): 377-385. DOI:10.1016/j.foodres.2004.10.006.
[29]
SUN X D, ARNTFIELD S D. Gelation properties of salt-extracted pea protein induced by heat treatment[J]. Food Research International, 2010, 43(2): 509-515. DOI:10.1016/j.foodres.2009.09.039.
[30]
WANG L Y, DONG Y B, WANG L, et al. Elucidating the effect of the Hofmeister effect on formation and rheological properties of soy protein/κ-carrageenan hydrogels[J]. Food Hydrocolloids, 2023, 143: 108905. DOI:10.1016/j.foodhyd.2023.108905.
[31]
ZHANG X Y, ZHANG S, ZHONG M M, et al. Soy and whey protein isolate mixture/calcium chloride thermally induced emulsion gels: rheological properties and digestive characteristics[J]. Food Chemistry, 2022, 380: 132212. DOI:10.1016/j.foodchem.2022.132212.
[33]
WANG W J, SHEN M Y, LIU S C, et al. Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: the effect of salt addition[J]. Carbohydrate Polymers, 2018, 192: 193-201. DOI:10.1016/j.carbpol.2018.03.064.
[34]
YANG G, ZHENG T, CHENG Q H, et al. Molecular dynamics simulation on shear thinning characteristics of non-Newtonian fluids[J]. Acta Physica Sinica, 2021, 70(12): 124701. DOI:10.7498/aps.70.20202116.
[35]
BI C H, LI D, WANG L J, et al. Characterization of non-linear rheological behavior of SPI-FG dispersions using LAOS tests and FT rheology[J]. Carbohydrate Polymers, 2013, 92(2): 1151-1158. DOI:10.1016/j.carbpol.2012.10.067.
[36]
QIAO C D, WANG X J, ZHANG J L, et al. Influence of salts in the Hofmeister series on the physical gelation behavior of gelatin in aqueous solutions[J]. Food Hydrocolloids, 2021, 110: 106150. DOI:10.1016/j.foodhyd.2020.106150.
[37]
KUNZ W. Specific ion effects in colloidal and biological systems[J]. Current Opinion in Colloid & Interface Science, 2010, 15(1/2): 34-39. DOI:10.1016/j.cocis.2009.11.008.